Government General Degree College Chapra Curriculum Plan under NEP 2020 Department of Mathematics B.Sc Mathematics (Major Course) Semester- IV

Semester	Period of	Course	Name of the	Paper Name	Brief Description of	Number
	Semester	Code	Faculty		the Topic	of
						Lecture
SEM- IV	January- June	MATH- M-T-04	Biswajit Paul	Differential Equation	Differential equations and mathematical models.	20 L
					General, particular, explicit, implicit and singular solutions of a differential equation.	
					Separable equations and equations reducible to this form.	
					Exact differential equations and integrating factors.	
					Linear equation and Bernoulli equations, special integrating factors and transformations.	
					First order and higher degree differential equations, solvable for x, y and p, Clairaut's Equations: general and singular solutions.	
					Plotting a family of curves which are solutions of second order differential equations.	
					Plotting a family of curves which are solutions of third order differential equations.	

	Dr. Asim	Differential	Lipschitz condition and	30 L
	Kumar Das	Equation	(Statement only).	
			General solution of	
			homogeneous equation	
			principle of	
			superposition.	
			Wronskian: its properties and	
			applications, linear	
			homogeneous	
			equations of higher order with constant	
			coefficients.	
			Euler's equation,	
			undetermined	
			coefficients.	
			Method of variation of parameters.	
			Partial differential	
			equations – Basic concepts and	
			definitions.	
			problems.	
			First order equations:	
			construction and	
			geometrical interpretation,	
			Lagrange's method,	
			Method of	
			characteristics for	
			obtaining general solution of quasi linear	
			equations.	
			Canonical forms of first-order linear	
			equations.	
			Method of separation	
			first order partial	
			differential equations.	

	Dr. Anindo	Differential	Systems of linear	25 1
	Chakraborty	Equation	differential equations. Types of linear systems.,	23 L
			Differential operators.	
			An operator method for linear systems with constant coefficients.	
			Basic Theory of linear systems in normal form.	
			Homogeneous linear systems with constant coefficients, two Equations in two unknown functions.	
			Equilibrium points.	
			Interpretation of the phase plane.	
			Power series solution of a differential equation about an ordinary point, solution	

			about a regular singular point.	
MATH- M-T-05	Biswajit Paul	Algebra- II	Properties of cosets. Lagrange's theorem and consequences including Fermat's little theorem. External direct product of a finite number of groups. Center of a group, centralizer, normalizer. Normal subgroups. Factor groups. Cauchy's theorem for finite abelian groups. Group homomorphisms, basic properties of homomorphisms. Cayley's theorem. Properties of isomorphisms. First, second and third isomorphism theorems. Automorphism theorems. Automorphism groups, automorphism groups of finite and infinite cyclic groups, automorphism groups. Characteristic subgroups, Commutator subgroups and its properties.	30 L

			group of units modulo n as an external direct product, internal direct products. Fundamental theorem of finite abelian groups. Sylow's theorems and consequences. Cauchy's theorem, Simplicity of A_n for $n \ge 5$, non-simplicity tests.	
	Dr. Aninda Chakrabarty	Algebra- II	Definition and examples of rings. Properties of rings, Subrings. Integral domains and fields. Characteristics of a ring. Ideal, ideal generated by a subset of a ring. Factor rings. Operations on ideals. Prime and maximal ideals. Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III.	15 L
	Dr. Asim Kumar Das	Algebra-II	Concept of Vector space over a field: Examples, concepts of Linear combinations, linear dependence and independence of a	30 L

		finite number of vectors. Sub- space, concepts	
		of generators and basis of a finite dimensional vector space.	
		Replacement theorem. Extension theorem. Deletion theorem and their applications.	
		Row space, column space.	
		Euclidean Spaces. Orthogonal and orthonormal vectors. Gram-Schmidt process of orthogonalization	
		Linear transformations. Null space. Range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations.	
		Eigenvalues, eigen vectors and characteristic equation of a matrix. Matric polynomials, Cayley- Hamilton theorem and its use in finding the inverse of a matrix.	
		Diagonalization, Canonical forms.	

Government General Degree College Chapra Curriculum Plan under NEP 2020 Department of Mathematics B.Sc Mathematics (Minor Course) Semester- IV

Sem	Period	Course	Name of	Paper	Brief Description of the Topic	Numbe
ester	of	Code	the Faculty	Name		r of
	Semes		-			Lecture
	ter					
SEM - IV	ter Januar y- June	MATH- MI – T – 02	Biswajit Paul	Calculus & Differen tial Equatio n	Real-valued functions defined on an interval, limit and Continuity of a function (using $\varepsilon - \delta$). Algebra of limits. Differentiability of a function. Successive derivative: Leibnitz's theorem and its application to problems of type e^{ax+b} sinx, $e^{ax+b}cosx$, $(ax + b)^n sinx$, $(ax + b)^n cosx$. Partial derivatives. Euler's theorem on homogeneous function of two and three variables. Curvature, rectilinear asymptotes. Indeterminate Forms: L'Hospital's Rule (Statement and Problems only).	15 L
			Dr. Asim Kumar Das	Calculus & Differen tial Equatio n	Statement of Rolle's Theorem and its geometrical interpretation. Mean value theorems of Lagrange and Cauchy. Statements of Taylor's and Maclaurin's theorems with Lagrange's and Cauchy's forms of remainders. Taylor's and Maclaurin's infinite series of functions like e^x , sinx, cosx, $(1 + x)^n$, log(1+x) with restrictions wherever necessary. Application of the principle of maxima and minima for a function of a single variable. Reduction formulae, derivations and illustrations of reduction formulae of the type	15 L

			$\int \sin^n x dx, \int \cos^n x dx,$ $\int \tan^n x dx, \int \sec^n x dx,$ $\int (\log x)^n dx,$ $\int \sin^n x \cos^m x dx$	
	Dr. Aninda Chakrabart y	Calculus & Differen tial Equatio n	First order equations: (i) Exact equations and those reducible to such equations. (ii) Euler's and Bernoulli's equations (Linear). (iii) Clairaut's Equations: General and Singular solutions. Second order differential equation: (i) Method of variation of parameters, (ii) Method of undetermined coefficients. Linear homogeneous equations with constant coefficients, method of variation of parameters, simultaneous differential equations.	20 L